Skip to content

McCalla Lab

Materials Chemistry and Chemical Physics

Menu
  • Home
  • Research
  • Publications
  • People
  • Gallery
  • Contact

Research

One key approach that we use involves combinatorial synthesis, allowing efficient screening of materials across broad and extremely complex composition spaces.  Our group both uses and develops high-throughput synthesis reactions to make 64 milligram-scale samples simultaneously, which are then characterized in an automated manner with X-ray diffraction. In addition, we are also developing high-throughput electrochemical techniques in order to characterize the vast arrays of samples in a more comprehensive manner, which will allow the rapid screening of novel materials across the multi-component systems used both commercially (e.g. Li-Ni-Mn-Co-O for Li-ion batteries) as well as a number of proposed materials and technologies beyond Li-ion.

Complementary to the high-throughput approach, our group uses traditional solid-state synthesis to make bulk samples in order to study in detail the mechanisms taking place during operation of the batteries and to ensure that the results obtained on the small combinatorial samples scale up.  These studies involve a wide variety of characterization techniques including X-ray photoemission spectroscopy, transmission electron microscopy, DFT calculations, Mössbauer spectroscopy, X-ray absorption spectroscopy, neutron diffraction and synchrotron XRD.  The vast number of experimental techniques required for such work provides students with numerous opportunities to collaborate with world-class researchers.  This interdisciplinary work is extended further by also studying electronic transport and magnetic properties of key novel materials developed within the context of the battery research.

We also have new diverse collaborations looking at electrosynthesis, electronic transport in delafossites, and iron as a fuel source.

.

.

.

Recent Posts

  • Our first ever anode paper!
  • Development of high voltage cathodes
  • Solid electrolyte methods paper
  • Eric presents in Orlando!
  • New review paper in Energy & Environmental Science
  • Home
  • Research
  • Publications
  • People
  • Gallery
  • Contact